
2540 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 63, NO. 12, DECEMBER 2016

Fluctuations in Global Brain Activity Are Associated
With Changes in Whole-Brain Connectivity of

Functional Networks
Dustin Scheinost∗, Member, IEEE, Fuyuze Tokoglu, Xilin Shen, Emily S. Finn, Stephanie Noble,

Xenophon Papademetris, Senior Member, IEEE, and R. Todd Constable

Abstract—Objective: The aim of this study was to explore the
relationship between global brain activity, changes in whole-brain
connectivity, and changes in brain states across subjects using
resting-state functional magnetic resonance imaging. Methods: We
extended current methods that use a sparse set of coactivation pat-
terns to extract critical time points in global brain activity. Critical
activity time points were defined as points where the global signal
is greater than one standard deviation above or below the aver-
age global signal. Four categories of critical points were defined
along dimensions of global signal intensity and trajectory. Voxel-
based methods were used to interrogate differences in connectivity
between these critical points. Results: Several differences in con-
nectivity were found in functional resting-state networks (RSNs) as
a function of global activity. RSNs associated with cognitive func-
tions in frontal, parietal, and subcortical regions exhibited greater
whole-brain connectivity during lower global activity states. Mean-
while, RSNs associated with sensory functions exhibited greater
whole-brain connectivity during the higher global activity states.
Moreover, we present evidence that these results depend in part
upon the standard deviation threshold used to define the critical
points, suggesting critical points at different thresholds represent
unique brain states. Conclusion: Overall, the findings support the
hypothesis that the brain oscillates through different states over
the course of a resting-state study reflecting differences in RSN
connectivity associated with global brain activity. Significance: In-
creased understanding of brain dynamics may help to elucidate
individual differences in behavior and dysfunction.

Index Terms—Brain states, coactivation patterns, connectivity,
dynamic connectivity, resting-state.

I. INTRODUCTION

R ESTING-STATE functional magnetic resonance image
(rs-fMRI) enables the investigation of spatial and tem-

poral patterns of brain activity without the need for an explicit
behavioral task. These patterns of brain activity have been used
to cluster distinct brain regions to form resting-state networks
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(RSN) [1], [2]. RSNs divide the brain along known anatomical
and functional boundaries [3], are highly reliable across pop-
ulations [4], [5], and are present under anesthesia [6], [7] and
during sleep [8]. Canonical RSNs include the default mode net-
work (DMN), sensory/motor network, visual networks, salience
network, and several networks related to attention and cognitive
control [2], [9], [10]. These networks have been correlated with
many cognitive functions [11], [12] and dysregulation of RSNs
may play a key role in clinical disorders [13], [14]. However,
these RSNs often represent “average” patterns defined over rela-
tively long, continuous periods of time [15], [16] which may not
permit a complete characterization of the temporal dynamics of
these RSNs [16].

To investigate these dynamics, recent studies have begun ex-
ploring the contribution of coactivation patterns from a sparse
set of critical points in time (defined as when a particular key
node of a network enters periods of high activity) in establishing
RSNs [17]–[20]. For example, the DMN can be established us-
ing only ∼20 critical points when the posterior cingulate cortex
(PCC; a key node in the DMN) is entering periods of activity
one standard deviation above its mean activity [17]–[20]. These
results suggest that RSNs arise from brief, dynamic interactions
rather than average correlated activity over sustained periods.

However, studies to date have focused on critical points iden-
tified from the activity of single regions of interest (ROIs) and
have not explored critical points defined in the context of whole-
brain activity. Although this global brain signal is traditionally
removed during the analysis of rs-fMRI data [21], emerging
evidence suggests that key information is embedded within this
signal [22]–[24]. As such, critical points defined based the global
signal, instead of single ROIs, may help to elucidate the dynam-
ics of whole-brain connectivity in RSNs.

We hypothesized that whole-brain connectivity in RSNs
would vary with the level of global activity, as reflected by
the blood oxygenation level dependent (BOLD) signal aver-
aged across the grey matter. We analyzed 100 subjects with
48 min of rs-fMRI data and extracted critical time points from
the fMRI timecourse, defined as points where the grey matter
BOLD signal was entering or exiting periods of high or low
activity [17], [18]. Our acquisition protocol collected 40 min
of rs-fMRI data for each subject allowing a sparse temporal
parcellation of critical time points (less than 20% of the data),
while still retaining sufficient data to reliably estimate voxel-
based connectivity. The intrinsic connectivity distribution (ICD)
[31], a voxel-based connectivity method, was used to assess
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differences in whole-brain connectivity between these global
activity levels.

II. EXPERIMENTAL DESIGN AND SETUP

A. Motivation

The goal of this work was to investigate the relationship be-
tween the global activity of the brain (i.e., the global signal)
and functional connectivity between well-known RSNs. We hy-
pothesized that RSNs would strengthen and weaken as the global
signalg(t) changed over time t. We model specific points in the
trajectory of g(t), where the signal enters and exits periods of
higher and lower activity. If networks vary in their strength as a
function of g(t), then more extreme values of the global signal
(i.e., high or low global activity) should offer more power to
detect these differences. Additionally, by selecting only points
with the same magnitude of g(t) relative to the standard devia-
tion, we ensure that data for all subjects are equally scaled and
can therefore be combined. Finally, it is likely that entering and
exiting periods of high/low activity represent different biologi-
cal processes involving different RSNs. As such, we propose to
separate these points based on the derivative of g(t), g′(t). In this
work, we focus only on the sign of g′(t)and do not incorporate
the magnitude ofg′(t). Given the slow and narrow frequencies
used for rs-fMRI (∼0.01–0.1 Hz), variations in the magnitude
of g′(t)are expected to be small.

B. Participants and Imaging Protocols

One-hundred healthy right-handed adults between the ages of
18 and 65 participated in the study. Participants were recruited
(using posters and word of mouth) from the local area. Subjects
were screened using self-reports, and had no history of psychi-
atric or neurological illness. All participants provided written
informed consent in accordance with a protocol approved by
the Human Research Protection Program of Yale University.
The analyses included 50 females (age = 33.6 ± 12.4) and 50
males (age = 34.9 ± 10.1); all subjects were part of a previous
study [25].

Participants were scanned on two identically configured
Siemens 3T Tim Trio scanners at the Yale Magnetic Resonance
Research Center and were instructed to rest with their eyes open,
to not think of anything in particular, and to not fall asleep. The
first 59 participants were scanned using a 12-channel head coil.
The remaining 41 participants were scanned using a 32-channel
head coil. There were no significant differences in the distribu-
tion of males and females or ages scanned between the two head
coils (see [26] for further details).

Each session began with a localizing scan, followed by
a low-resolution sagittal scan for slice alignment, and then
the collection of 25 axial-oblique T1-weighted slices aligned
with the anterior commissure - posterior commissure (AC-PC)
such that the top slice was at the superior brain. Resting-
state functional data were collected at the same slice loca-
tions as the T1-weighted anatomical data, using a T2∗-sensitive
gradient-recalled single shot echo-planar pulse sequence [rep-
etition time (TR) = 1550 ms, echo time (TE) = 30 ms, flip
angle = 80°, FOV = 220 × 220 mm2, 64 × 64 matrix,

resolution = 3.435× 3.425× 6 mm]. Eight functional runs were
used, each containing 240 volumes (approximately 6 min, for
a total of approximately 48 min of resting-state data). The first
six volumes of the functional runs were discarded to allow the
signal to reach a steady state. Finally, a high-resolution anatom-
ical image was collected using an magnetization-prepared rapid
gradient-echo (MPRAGE) sequence (TR = 2530 ms, TE =
2.77 ms, TI = 1100 ms, flip angle = 7°, resolution = 1 mm3).

C. Preprocessing

Images were slice-time and motion corrected using SPM5
and were iteratively smoothed until the smoothness for any
image had a full width half maximum of approximately 6 mm
[27], [28]. All further analyses were performed using BioImage
Suite [29] unless otherwise specified. Several covariates were
regressed from the data, including linear and quadratic drift, a
24-parameter model of motion [30], mean cerebral-spinal fluid
signal, and mean white matter signal. Finally, the data were
temporally smoothed with a zero mean unit variance Gaussian
filter (cutoff frequency = 0.12 Hz). A gray matter mask was
applied to the data so that only voxels in the gray matter were
used in the calculation.

D. Definition of Critical Points

Critical points were defined using a modified point-process
method [17], [18]. After preprocessing, the average gray matter
timecourse was extracted for each run and each participant.
As a result of the bandpass filtering, this global signal has a
mean of zero. This timecourse was then normalized by dividing
by the standard deviation across all time points. This z-score-
like normalization does not change the underlying patterns of
activity in the gray matter but allows for the timecourse for each
participant to be comparably scaled. Critical points of activity
were defined as points where the normalized signal crosses time
points either one standard deviation above or below the average
signal. A threshold of one standard deviation is consistent with
previous work [17], [18]. If networks vary in their strength as
a function of global activity, then extreme values should offer
more power to detect these differences.

Positive critical points (PCPs) were defined as time points
where the global signal crossed the threshold marking one stan-
dard deviation above the mean signal. Likewise, negative critical
points (NCPs) were defined as time points where the global sig-
nal crossed the threshold marking one standard deviation below
the mean signal (see Fig. 1). The PCPs and NCPs were fur-
ther delineated based on the trajectory of the global signal at
the critical point (i.e., the sign of the derivative of the signal).
This slope distinguishes whether the signal was entering or ex-
iting periods of high or low activity (i.e., PCPs with a positive
slope are points where the signal is increasing to values greater
than one standard deviation above the mean, see Fig. 1). We
define a positive trajectory of the global signal as moving away
from the mean signal. Thus, for PCPs, a positive trajectory in-
dicates a positive slope while, for NCPs, a positive trajectory
indicates a negative slope. For this initial study, we only in-
clude the sign, and not the magnitude, of the trajectory in the
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Fig. 1. Definition of critical points. The average gray matter signal was nor-
malized by dividing by the standard deviation across all timepoints. Critical
points of activity were defined as points where the normalized signal was either
one standard deviation above or below the average signal. PCP(+)’s are defined
as points where the trajectory of the signal is moving away from the mean and
crosses the threshold marking one standard deviation above the mean (yellow
X). PCP(–)’s are defined as points where the trajectory of the signal is moving
toward the mean and crosses the threshold marking one standard deviation above
the mean (green X). NCP(+)’s are defined as points where the trajectory of the
signal is the moving away from the mean and crosses the threshold marking
one standard deviation below the mean (blue X). NCP(–)’s are defined as points
where the signal is trajectory of the moving toward the mean and crosses the
threshold marking one standard deviation below the mean (red X).

critical point definition. Faster or slower crossings may represent
meaningful differences. However, given the slow nature of the
blood oxygenation changes that the rs-fMRI signal measures,
faster crossings may represent some level of artifact likely from
motion or other physiological noise.

Altogether, we defined four sets of critical points (see Fig. 1).
PCP(+)’s are points where the trajectory of the signal is moving
away from the mean and crosses one standard deviation above
the mean. PCP(–)’s are points where the trajectory of the signal
is moving toward the mean and crosses one standard deviation
above the mean. NCP(+)’s are points where the trajectory of
the signal is the moving away from the mean and crosses one
standard deviation below the mean. NCP(–)’s are points where
the trajectory of the signal is moving toward the mean and
crosses one standard deviation below the mean.

These critical points were identified using the following al-
gorithm. First, the global grey matter signal was z-score nor-
malized. Second, time points within one standard deviation of
the mean were set to zero and time points beyond one standard
deviation from the mean were set to 1. Third, the derivative
of this binary timecourse was estimated with a backward dif-
ference operator. Critical points were identified as time points
associated with a derivative of 1 or –1. Fourth, these critical
points were categorized as PCP(+)’s, PCP(–)’s, NCP(+)’s, or
NCP(–)’s based on their signal trajectory and normalized sig-
nal intensity as described above. This algorithm was performed
independently for each run and each subject.

E. Whole-Brain Connectivity

For each participant, frames identified as critical points of
each type were concatenated for further analysis, resulting
in four sets of data for each participant. Next, to investigate

differences between these four sets of data, voxel-wise whole-
brain functional connectivity was calculated independently for
each of the four types of critical points and for each individ-
ual participant as described previously [31]. This voxel-wise
whole-brain functional connectivity can be measured by the
ICD efficiently. Voxel-based functional connectivity measures
involve correlating the timecourse for any voxel with the time-
course of every other voxel in the grey matter. Traditionally,
these correlations are summarized using a network theory met-
ric, such as degree or strength. Such metrics can be calculated
from the distribution of correlations for any voxelx. First, it
is defined as the distribution of the correlations for the time-
course at voxel x to the timecourse at every other voxel in
the brain and can be estimated by computing the histogram of
these correlations. Degree, based on a binary graph, can be es-
timated as the integral of this distribution from any thresholdτ
to 1, d(x) =

∫ 1
τ f(x, r)dr. Strength can be estimated as the

mean of this distribution or a distribution of transformed corre-
lations, s(x) =

∫ 1
−1 w(r)f(x, r)dr, where w(r)is generally the

correlation coefficients or the Fisher transform of the correla-
tion coefficients. In contrast, ICD models the entire survival
function corresponding withf(x, r). Each point on the survival
function is simply degree, based on a binary graph, evaluated at
that particular thresholdτ . The ICD approach is to parameterize
the change in voxel’s degree as the threshold defining whether
voxels are connected (i.e., correlation threshold) is increased.
Previously [31], we showed that a stretched exponential decay
with unknown variance parameter (α) and shape parameter (β)
was sufficient to model this survival function. Modeling the
survival function with a stretched exponential is equivalent to
modeling the underlying distribution as a Weibull distribution:
f(x, r,α,β) = β

α ( r
α )β−1 exp(−( r

α )β ), where xis the spatial lo-
cation of a voxel, r is a correlation between two timecourses,α
is the variance parameter, and β is the shape parameter. Thus,
ICD models the distribution of correlations between a voxel and
every other voxel in the brain, with αas the parameter of inter-
est. No thresholds are needed to estimate the variance or model
the distribution. This algorithm was performed for all voxels
in the gray matter resulting in a parametric image of the alpha
parameter for each participant.

To interrogate relative differences in connectivity, each partic-
ipant’s alpha map was normalized by subtracting the mean alpha
value across all voxels and dividing by the standard deviation
across all voxels. This z-score-like normalization does not affect
the underlying connectivity pattern but does permit the investi-
gation of relative differences in connectivity in the presence of
large global differences in connectivity [32]. This normalization
also has been shown to reduce the effects of confounds related
to motion [33].

F. Common Space Registration

To facilitate comparisons of imaging data, all single-
participant ICD results were warped to a common template
space through the concatenation of a series of linear and nonlin-
ear registrations. The functional series were linearly registered
to the T1 axial-oblique [two-dimensional (2-D) anatomical]
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images. The 2-D anatomical images were linearly registered
to the MPRAGE (3-D anatomical) images. Finally, the 3-D
anatomical images were nonlinearly registered to the template
brain. All transformation pairs were calculated independently
and combined into a single transform that warps the single par-
ticipant results into common space. This single transformation
allows the individual participant images to be transformed to
common space with only one transformation, reducing inter-
polation error. All transformations were estimated using the
registration algorithms in BioImage Suite.

G. Motion Analysis

As group differences in motion have been shown to con-
found functional connectivity results [34], the frame-to-frame
displacement was calculated for each critical point. No signif-
icant differences (p > 0.8, for all comparison) in motion were
found between the PCP(+)’s, the PCP(–)’s, the NCP(+)’s, and
the NCP(–)’s. Additionally, we employed regression of a 24
parameter motion model, z-score-like normalization, and an it-
erative smoothing algorithm. All have been shown to minimize
motion confounds associated with rs-fMRI [28], [33].

H. Statistical Analysis

ICD maps were analyzed using voxel-wise paired t-test to
examine the differences between the PCP(+)’s, the PCP(–)’s,
the NCP(+)’s, and the NCP(–)’s. Imaging results are shown
at a cluster-level threshold of p < 0.05 using family-wise er-
ror correction as determined by AFNI’s 3dClustSim program.
Anatomical locations were localized using the Yale Brodmann
Atlas.

III. RESULTS

This section is organized in the following manner. First, we
describe the characteristics of the global signal and of the crit-
ical points. Second, we compare critical points with different
trajectories but with the same signal value such that PCP(+)’s
are compared with PCP(–)’s and NCP(+)’s are compared with
NCP(–)’s. Third, we compare critical points with different signal
values but the same trajectory (PCP(+)’s versus NCP(+)’s and
PCP(–)’s versus NCP(–)’s). Next, we compare critical points
that differ both in signal value and trajectory [PCP(+)’s versus
NCP(–)’s and PCP(–)’s versus NCP(+)’s]. We then quantify
how connectivity in canonical RSNs changes at each of these
critical points, derived from mean connectivity from ICD esti-
mates of whole-brain connectivity. Finally, we present qualita-
tive results examining the effect of different standard deviation
thresholds used to define critical points.

A. Characterizing the Global Signal and Critical Points

To characterize which regions contribute to the global sig-
nal, the timecourse for each region in the Shen 268 functional
atlas [10], [35] was correlated with the global signal and these
correlations were averaged across participants. As shown in
Fig. 2(a), 265 out of the 268 ( > 98%) regions showed signifi-
cant correlation (p < 0.05) with the global signal, exhibiting an

Fig. 2. Characteristics of the global signal. (a) Greater than 98% of the grey
matter showed significant correlations with the global signal, with an average
correlation of r = 0.43 ± 0.14. Warmer colors represent greater correlation with
the global signal. (b) The distribution of the standard deviation of the global
signal showed a heavy tail. The black line represents a kernel density estimate
of the distribution.

TABLE I
NUMBER OF CRITICAL POINTS FOR MEN AND WOMEN

Type Men Women p-value

PCP(+) 80.56 ± 0.19 85.56 ± 0.12 0.009
PCP(–) 80.58 ± 0.14 83.72 ± 0.05 0.110
NCP(+) 80.48 ± 0.18 85.78 ± 0.10 0.006
NCP(–) 80.60 ± 0.15 83.94 ± 0.09 0.085

average correlation of 0.43 ± 0.14. The three regions that did
not contribute to the global signal were located in the brainstem.
Fig. 2(b) shows the distribution of the standard deviation of the
global signal across participants.

There was a similar number of instances of each of the four
categories of critical points [PCP(+)’s = 83.1 ± 9.7, PCP(–)’s
= 82.3 ± 9.7, NCP(+)’s = 83.1 ± 9.8, NCP(–)’s = 82.2 ± 9.7].
On average, instances of each category of these critical points
occurred less than 5% of the total time; when combined, in-
stances of all critical points occurred less than 20% of the total
time. There were no significant main effects of scanner or head
coil for any category of critical point (p > 0.2, all pairwise
comparisons). Women had a greater number of critical points
(see Table I). The number of critical points was not correlated
with age (p > 0.15 for all correlations). There was no difference
in the number of critical points between the eight resting-states
runs (p > 0.2 for all types). No temporal clustering of critical
points was observed and the amount of time between adjacent
critical points appears to follow a lognormal distribution.

B. Comparison Between Critical Points With the Same
Intensity but Different Signal Trajectories

PCP(+)’s demonstrated significantly greater whole-brain
connectivity in visual areas (BA7, fusiform), right BA22, left
motor cortex, and left thalamus when compared to PCP(–)’s
[see Fig. 3(a)]. PCP(–)’s exhibited significantly greater whole-
brain connectivity in medial and lateral prefrontal cortex (PFC),
left inferior frontal gyrus, left BA39, and PCC when compared
to PCP(+)’s [see Fig. 3(a)]. NCP(+)’s demonstrated signif-
icantly greater whole-brain connectivity in bilateral fusiform
and BA19 compared to NCP(–)’s [see Fig. 3(b)]. NCP(–)’s
demonstrated significantly greater whole-brain connectivity in
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Fig. 3. Comparison between critical points with the same intensity but different signal trajectories. (a) PCP(+)’s compared to PCP(–)’s. Warmer colors indicate
regions with greater whole-brain connectivity during PCP(+)’s. Cooler colors indicate regions with greater whole-brain connectivity during PCP(–)’s. (b) NCP(+)’s
compared to NCP(–)’s. Warmer colors indicate regions with greater whole-brain connectivity during NCP(+)’s. Cooler colors indicate regions with greater whole-
brain connectivity during NCP(–)’s. All results shown for p < 0.05 corrected for multiple comparisons. Graphs on the right indicate which critical points are being
compared.

Fig. 4. Comparison between critical points with the same intensity but different signal trajectories. (a) PCP(+)’s compared to PCP(–)’s. Warmer colors indicate
regions with greater whole-brain connectivity during PCP(+)’s. Cooler colors indicate regions with greater whole-brain connectivity during PCP(–)’s. (b) NCP(+)’s
compared to NCP(–)’s. Warmer colors indicate regions with greater whole-brain connectivity during NCP(+)’s. Cooler colors indicate regions with greater whole-
brain connectivity during NCP(–)’s. All results shown for p < 0.05 corrected for multiple comparisons. Graphs on the right indicate which critical points are being
compared.

the medial frontal (MF) cortex and striatum when compared to
NCP(+)’s [see Fig. 3(b)].

C. Comparison Between Critical Points With Different
Intensities But the Same Signal Trajectory

PCP(+)’s demonstrated significantly greater whole-brain
connectivity in bilateral sensorimotor cortex (SMC), bilateral
auditory cortex, bilateral thalamus, bilateral BA22, and the left
putamen when compared to NCP(+)’s [see Fig. 4(a)]. NCP(+)’s
demonstrated significantly greater whole-brain connectivity in
lateral PFC, medial PFC, and right lateral parietal lobe when
compared to PCP(+)’s [see Fig. 4(a)]. PCP(-)’s demonstrated
significantly greater whole-brain connectivity in the SMC and
right BA22 when compared to NCP(–)’s [see Fig. 4(b)]. NCP
(–)’s demonstrated significantly greater whole-brain connectiv-
ity in lateral PFC, right lateral parietal lobe, and striatum when
compared to PCP(–)’s [see Fig. 4(b)].

D. Comparison Between Critical Points With Different
Intensities and Different Signal Trajectories

PCP(+)’s demonstrated significantly greater whole-brain
connectivity in bilateral SMC, visual cortex (including the

fusiform), and bilateral BA22, when compared to NCP(–)’s
[see Fig. 5(a)]. NCP(–)’s demonstrated significantly greater
whole-brain connectivity in the PFC, caudate, and bilateral
lateral parietal lobe when compared to PCP(+)’s [see Fig.
5(a)]. PCP(–)’s demonstrated significantly greater whole-brain
connectivity in right auditory cortex, PCC, medial SMC, and
left lateral PFC when compared to NCP(+)’s [see Fig. 5(b)].
NCP(+)’s demonstrated significantly greater whole-brain
connectivity in the inferior frontal lobe when compared to
PCP(–)’s [see Fig. 5(b)].

E. Split Half Analysis

As our results are dependent on subsampling a large amount
of data per participant, we performed an exploratory analysis to
investigate whether less data would produce similar results. For
each participant, we split the data into halves (the first four runs
and the last four runs) and repeated the main analysis, resulting
in two sets of the six contrasts between different types of critical
points defined above. Using the Shen 268 functional atlas [10],
[35], we calculated the average contrast for each of the 268 ROIs
in the atlas, creating a 268-entry vector for each contrast from
each half of the data. For each contrast, the correlation between
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Fig. 5. Comparison between critical points with different intensities and signal trajectories. (a) PCP(+)’s compared to NCP(–)’s. Warmer colors indicate regions
with greater whole-brain connectivity during PCP(+)’s. Cooler colors indicate regions with greater whole-brain connectivity during NCP(–)’s. (b) PCP(–)’s
compared to NCP(+)’s. Warmer colors indicate regions with greater whole-brain connectivity during PCP(–)’s. Cooler colors indicate regions with greater
whole-brain connectivity during NCP(+)’s. All results shown for p < 0.05 corrected. Graphs on the right indicate which critical points are being compared.

TABLE II
SIMILARITY OF CONTRASTS USING THE FIRST AND SECOND HALVES OF THE

DATA

Contrast Correlation Contrast Correlation

PCP(+)-PCP(–) 0.69 PCP(–)-NCP(–) 0.51
NCP(+)-NCP(–) 0.82 PCP(+)-NCP(–) 0.50
PCP(+)-NCP(+) 0.73 PCP(–)-NCP(+) 0.31

vectors from both halves of the data was computed to assess
similarity. As shown in Table II, given the same contrasts, the
two halves were significantly correlated, suggesting that similar
network differences are detected within each half of the data.

F. Association Between Canonical RSNs and Critical Points

The previous analyses of voxel-wise whole-brain connectiv-
ity suggested that specific networks are particularly associated
with each category of critical points perhaps reflecting par-
ticular brain states. For example, sensory networks tended to
exhibit the greatest connectivity during PCP(+)’s. We quan-
tified this using eight canonical RSNs defined in Finn et al.
[10] by calculating the average whole-brain connectivity within
each RSN for each type of critical point. As shown in Fig. 6,
each network [with the exception of the inferior visual network,
Fig. 6(h)] exhibited significantly (p < 0.01) greater connectiv-
ity during one specific category of critical point than during
the other critical points. For cognitive networks [MF, fron-
toparietal (FPN), and subcortical/salience networks], whole-
brain connectivity was greatest during NCP(–)’s. For the PCC–
PFC, whole-brain connectivity was greatest during PCP(–)’s
[see Fig. 6(d)]. For sensory networks (motor, visual association,
and visual networks), whole-brain connectivity was the greatest
during PCP(+)’s [see Fig. 6(e)–(g)]. The inferior visual network
was the one network to exhibit similar whole-brain connectivity
across several different critical points [see Fig. 6(h)].

G. Critical Points for Other Thresholds

As our definition of critical points relies on a threshold,
we repeated our main analysis using three additional standard

Fig. 6. RSN analysis of critical points. Whole-brain connectivity averaged
across eight canonical RSNs revealed that specific networks exhibit the greatest
connectivity during specific critical points. (a) The MF network, (b) the FPN
network, and (c) the subcortical/salience network showed the greatest whole-
brain connectivity during NCP(–)’s. (d) The PCC-PFC network showed the
greatest whole-brain connectivity during PCP(–)’s. (e) The motor network,
(f) visual association network, and (g) visual network showed the greatest whole-
brain connectivity during PCP(+)’s. (h) The inferior visual network was not
associated with any critical point in particular.

deviation thresholds (SD threshold = 0.5, 1.5, and 2) to explore
threshold-related effects. Unsurprisingly, using a standard de-
viation threshold of 0.5 resulted in a 1.5-fold increase in the
number of critical points identified (PCP(+)’s = 122.6 ± 12.8,
PCP(–)’s = 122.7 ± 13.4, NCP(+)’s = 122.7 ± 13.3, NCP(–)’s
= 122.5 ± 13.4). Qualitatively, similar associations between
the critical points and whole-brain connectivity were found us-
ing a threshold of 0.5 (see Fig. 7) compared with a thresh-
old of 1 (see Figs. 3–5). Notably, however, certain associations
between the motor network and the critical points were ob-
served at a threshold of 1 [see Figs. 3(a), (b), and 4(a) and
(b)] but not at the lower threshold of 0.5 [see Fig. 6(c)—(f)].
When using a standard deviation threshold of 1.5, the number of
critical points decreased [PCP(+)’s = 44.0 ± 5.9, PCP(–)’s =
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Fig. 7. Critical point analysis using a standard deviation threshold of 0.5. Pairwise comparisons of (a) PCP(+)’s and PCP(–)’s, (b) NCP(+)’s and NCP(–)’s,
(c) PCP(+)’s and NCP(+)’s, (d) PCP(–)’s and NCP(–)’s, (e) PCP(+)’s and NCP(–)’s, and (f) PCP(–)’s and PCP(+)’s revealed similar differences as in the main
analysis. All results shown for p < 0.05 corrected for multiple comparisons.

Fig. 8. Critical point analysis using a standard deviation threshold of 1.5. Pairwise comparisons of (a) PCP(+)’s and PCP(–)’s, (b) NCP(+)’s and NCP(–)’s,
(c) PCP(+)’s and NCP(+)’s, (d) PCP(–)’s and NCP(–)’s, (e) PCP(+)’s and NCP(–)’s, and (f) PCP(–)’s and PCP(+)’s revealed similar differences as in the main
analysis. Notably, regions in the DMN are more prominent whereas the fusiform is less prominent at the higher threshold of 1.5 compared to the lower threshold
of 0.5 in Fig. 7. All results shown for p < 0.05 corrected for multiple comparisons.

44.1 ± 6.1, NCP(+)’s = 43.3 ± 6.0, NCP(–)’s = 43.0 ± 6.1].
Qualitatively, similar associations between the critical points
and whole-brain connectivity were found using a threshold of 2
(see Fig. 8) compared with a threshold of 1 (see Figs. 3–5). No-
table differences between results using a threshold of 0.5 versus
1 were observed in the fusiform and the DMN. Differences in the
fusiform were less prominent at the higher threshold; whereas,
differences in the DMN were more prominent at the higher
thresholds. When using a standard deviation threshold of 2, the

number of critical points decreased [PCP(+)’s = 18.1 ± 3.3,
PCP(–)’s = 18.3 ± 3.3, NCP(+)’s = 18.1.7 ± 3.6, NCP(–)’s =
17.9 ± 3.7]. Comparison between the different types of critical
points is not presented as the number of points available at this
threshold may not be enough to reliably estimate voxel-based
functional connectivity or detect meaningful differences.

Finally, we repeated this analysis using a standard deviation
threshold of 0, which represents the lowest possible threshold.
At this threshold, only the sign of derivative of the global signal
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Fig. 9. Critical point analysis using a standard deviation threshold of 0. At
this threshold, only the sign of derivative of the global signal is used to define
critical points as no distinction between above or below the mean is made. This
comparison of CP(+)’s to CP(–)’s was strikingly similar to the PCP(+)’s versus
PCP(–)’s comparison [see Fig. 3(a)]. All results shown for p < 0.05 corrected
for multiple comparisons.

is used to define critical points as PCP and NCP do not exist
at this threshold. The average number of positive slope criti-
cal points, CP(+), was 140.2 ± 15.2 and the average number
of negative slope critical points, CP(–), was 140.0 ± 15.5. As
shown in Fig. 9, the comparison of CP(+)’s versus CP(–)’s was
strikingly similar to the PCP(+)’s versus PCP(–)’s comparison
[see Fig. 3(a)]. Together, these results further suggest the sta-
bility of many of the observed differences across critical point
definitions.

IV. DISCUSSION

Employing a temporal parcellation scheme driven by global
brain activity and a voxel-based measure of functional brain
organization, these data suggest that connectivity in well-
established RSNs varies with global brain activity. We defined
four brain states—or “critical points”—where the brain was
entering or exiting periods of activity more than one standard
deviation above or below the mean. When comparing these
critical points, regions associated with cognitive functions in
the frontal and parietal lobes and subcortical regions displayed
greater whole-brain connectivity during the low activity states.
Conversely, regions of the brain associated with sensory func-
tions displayed greater whole-brain connectivity during the high
activity states. Finally, we demonstrated that these results de-
pend on the standard deviation threshold used to define the
critical points.

In accordance with these results, previous studies have shown
that a large portion of typical RSN patterns can be captured
using only a small number of critical points in the BOLD time-
course, where a region of interest enters periods of high activity
[17]–[20]. An interpretation of the current and previous results is
that RSNs arise from dynamic interactions between regions [11]
occurring only at a few specific and discrete time points, rather
than a continuous and sustained interaction. This work builds
upon these recent studies by extending the critical point method-
ology to incorporate whole-brain connectivity, the global signal,

NCPs, and differences in signal trajectory. Our whole-brain con-
nectivity results suggest that RSNs dynamically change within
and between network connections in accordance with previous
reports [16], [36], [37]. Additionally, these connectivity results
suggest that, for many of these RSNs, a single state is associated
with the greatest level of whole-brain connectivity. Our results
suggest that NCPs and critical points with trajectories toward
the mean hold unique and possible biologically relevant infor-
mation. Contrasting these different critical points revealed ad-
ditional dynamics that may be missed by other methods. These
results agree with other studies that include NCPs [20].

When comparing the average whole-brain connectivity in
each of the eight RSNs, a trend emerged suggesting that cog-
nitive networks displayed the greatest connectivity during the
NCPs and sensory networks displayed the greatest connectiv-
ity during the PCPs. This result also emerges from pairwise
comparisons as the motor/somatosensory network consistently
demonstrated greater connectivity during the PCPs compared to
the NCPs [see Figs. 3(a), (b), 4(a), and (b)] and the FPN con-
sistently demonstrated greater connectivity during the NCPs
compared to the PCPs [see Figs. 3(a), (b), and 4(a)]. Of interest,
the striatum, which supports both motor and cognitive functions,
has higher connectivity during the NCP(–)’s, as also occurs for
the cognitive networks [see Figs. 2(b), 3(b), and 4(a)]. A similar
relationship between sensory and cognitive networks has been
observed in a previous study [20], where coactivation patterns
for sensory networks occurred at the opposite sign of global
activity as cognitive and attention networks. In addition, it has
been shown that the FPN dynamically alters its connectivity to
sensory networks in order to exert cognitive control during tasks
[36], [38]. This interaction between connectivity and global ac-
tivity may be explained by a model in which the brain collects
sensory information during periods of higher activity and subse-
quently directs attention to this collected information for further
processing during periods of lower activity.

While the number of critical points did not vary with scan-
ner, head coil, or age, we did observe an effect of sex. Across
all four types of critical points, women displayed a greater
number of critical points either at significance or trend levels
compared to men. Sexual dimorphism is observed in a num-
ber of neuroimaging and brain studies [39], including rs-fMRI
[5], [26], [40]–[42]. Previously observed sex-related differences
in RSNs may be related to the different number of critical points
as a greater number of critical points could lead to stronger net-
work and better network statistics. These results also suggest a
greater amount of “state” changes in women compared to men.
These differences in critical points between men and women
should be considered preliminary and future studies should aim
to more carefully characterize these effects.

Our main results were generated using a standard deviation
threshold of 1, which is consistent with previous studies using
critical point methods [17]–[20]. We qualitatively investigated
the impact of varying this threshold by repeating our analy-
sis using thresholds of 0.5 and 1.5. Using these two thresh-
olds produced results qualitatively similar to the main analysis.
However, potentially interesting differences emerged between
thresholds. For example, differences in the DMN were more
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pronounced at higher thresholds, while differences in the
fusiform were more pronounced at lower thresholds. There may
be, however, pragmatic reasons to avoid higher thresholds than
1.5; a threshold of 2 produced only 18 critical points, which may
not be enough to reliably estimate voxel-based functional con-
nectivity or detect meaningful differences. Overall, these small
differences across thresholds may indicate that the some portion
of relationship between the global signal and the connectivity is
threshold dependent; that is, critical points at different thresh-
olds may represent unique brain states.

A unique aspect of this study is the large amount of data
available per subject. Nearly 50 min of data was acquired for
each subject. The large amount of data enabled the use of a
novel temporal parcellation scheme which produced a sparse
set time points (less than 20% of the total data for each set) that
still matched the amount of time points in a typical rs-fMRI
experiment. Split-half analysis of the data suggests that similar
results are detected using less data. However, more data may be
required for each subject to fully capture individual differences
using rs-fMRI [10], [37].

Several limitations of this study exist. One limitation is the
lack of behavioral measures to relate to PCPs and NCPs. It
remains unclear if or how these dynamic changes in connectivity
and brain state are associated with behavior. Additionally, while
the TR used is this study (1.55 s) is relatively short compared
with standard fMRI sequences, the TR may still be too long to
completely uncouple the relationship between RSNs and global
activity. More rapid interactions may therefore be missed but it
should be noted that given the typical temporal response of the
blood oxygenation signal there are unlikely to be high frequency
changes that can be measured with this mechanism. For this
reason, we expect results consistent with the ones present in this
work when shorter TR’s are used.

Future work includes the use of higher temporal resolution
multiband sequences to estimate finer grain dynamics, incorpo-
rating the magnitude of the derivative of the global signal into
the estimation of critical points, and modeling all points in the
global signal instead of just the extreme values.

V. CONCLUSION

As the study of RSNs progresses, our ability to understand
and characterize the interactions between distinct RSNs will
continue to increase in importance. We demonstrated that global
brain activity moderates the interactions between RSNs in the
frontal lobe, SMC, and visual cortex. Future studies of global
brain activity, interactions between RSNs, and the relationship
between these networks and dynamic oscillations between brain
states are promising avenues for elucidating individual differ-
ences in behavior and dysfunction.
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