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The large-scale organization of the brain has features of complex networks that can be quantified using network
measures from graph theory. However, many network measures were designed to be calculated on binary
graphs, whereas functional brain organization is typically inferred from a continuous measure of correlations
in temporal signal between brain regions. Thresholding is a necessary step to use binary graphs derived from
functional connectivity data. However, there is no current consensus onwhat threshold to use, andnetworkmea-
sures and group contrasts may be unstable across thresholds. Nevertheless, whole-brain network analyses are
being applied widely with findings typically reported at an arbitrary threshold or range of thresholds. This
study sought to evaluate the stability of network measures across thresholds in a large resting state functional
connectivity dataset. Network measures were evaluated across absolute (correlation-based) and proportional
(sparsity-based) thresholds, and compared between sex and age groups. Overall, network measures were
found to be unstable across absolute thresholds. For example, the direction of group differences in a given net-
workmeasure may change depending on the threshold. Network measures were found to bemore stable across
proportional thresholds. These results demonstrate that caution should be used when applying thresholds to
functional connectivity data and when interpreting results from binary graph models.

© 2015 Elsevier Inc. All rights reserved.

Introduction

The human brain is a large-scale system of functionally connected
brain regions. This system can be modeled as a network, or graph, by
dividing the brain into a set of regions, or “nodes,” and quantifying the
strength of the connections between nodes, or “edges,” as the temporal
correlation in their patterns of activity. Network analysis, a part of graph
theory, provides a set of summary statistics that can be used to describe
complex brain networks using a reduced number of observations that
can be meaningfully compared between groups and/or related to be-
havior (Rubinov and Sporns, 2010). Recent studies have used this ap-
proach to characterize network properties as they relate to sex (Tian
et al., 2011), age (Meunier et al., 2009), and cognition (Dosenbach
et al., 2007), as well as in conditions such as addiction (Chanraud
et al., 2011), Alzheimer's disease (Supekar et al., 2008), schizophrenia
(Alexander-Bloch et al., 2013; Bassett et al., 2008), and others (Bassett
and Bullmore, 2006).

Network analyses of functional connectivity data are commonly
based on the blood oxygen level-dependent (BOLD) signal in functional
magnetic resonance imaging (fMRI), but can also be derived from elec-
troencephalography (EEG) or magnetoencephalography (MEG). For

example, network analysis of fMRI data was used to show that more ef-
ficient global information processing (characteristic path length) in
resting state was related to high intelligence quotient (IQ; van den
Heuvel et al., 2009). Another study used network analysis of MEG data
to show that functional integration (characteristic path length) and
functional segregation (clustering coefficient) were decreased in
Alzheimer's disease (Stam et al., 2009).

However, a central challenge of applying network analysis to func-
tional connectivity data is that many network measures were designed
to be calculated on binary graphs in which connections are either
present or not, whereas temporal correlations in fMRI signal are contin-
uous from −1 to 1. The typical approach is to: (1) define n non-
overlapping nodes across the brain using an anatomical atlas or a func-
tional parcellation method where nodes have voxels with similar time
courses; (2) estimate the network by computing the entries of the n-
by-n matrix representing the functional connections between node
pairs, either by linear association such as correlation or by some other
nonlinear measure such as mutual information; and (3) apply a thresh-
old to produce an n-by-n binary adjacency matrix representing the net-
work edges and to remove weak connections (Bullmore and Sporns,
2009; Simpson et al., 2013). Thus a threshold is commonly applied to
construct a binary graph from functional connectivity data.

The use of thresholded binary graphs is attractive because it facili-
tates the calculation of many network measures and reduces the
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computational burden of analyzing the graph. An alternative approach
is to use weighted graphs that are not binary but instead allow edges
to carry some sort of continuous weight value. With weighted graphs,
all edges remain in the graph and any node is connected to every
other node. However, some have argued that weighted graphs are not
reasonable biological structures because brain regions have sparse ana-
tomical connections only to other specific brain regions (Sporns, 2011).
Weighted graphs are also less computationally efficient, especially in
the analysis of large-scale networks such as voxel-based functional con-
nectivity networks (Telesford et al., 2011); the overwhelming number
of connections makes it difficult to extract meaningful information
(Serrano et al., 2009).

To define binary graphs, the applied threshold is typically absolute
(correlation-based) or sparsity-based (proportional). Each approach
has advantages and disadvantages. Absolute thresholds set a value for
the correlation coefficient between node pairs, above which they
are considered connected and below which they are not. Proportional
thresholds utilize a set percentage of the strongest connections
(edges), such as the top 10% of correlation values in the network. For
group comparisons, using a proportional threshold ensures that the
networks in each group have the same number of nodes, or network
size, and the same number of edges, or global degree. This allows for
more meaningful comparisons of other network measures that rely on
degree. However, proportional thresholds do not take into account ab-
solute differences in correlation values, therefore information about
overall group differencesmay be lost. Absolute thresholds retain this in-
formation, butmay result in networkswith different size or degree, or in
a network that is connected in one group but disconnected in the other
group. While a difference in node-connectedness between groups may
be informative, it confounds the comparison of graph measures that
vary significantly with degree (Alexander-Bloch et al., 2010). Moreover,
absolute thresholds may be too large for low-average connectivity net-
works or too small for high-average connectivity networks, thus elimi-
nating strong and significant connections or overemphasizing weak
connections (van Wijk et al., 2010).

There is also no consensus in the literature as to what specific
threshold should be used. A large range of absolute thresholds have
been applied, from a correlation coefficient of r = 0.1 (Buckner et al.,
2009, supplement) to r = 0.8 (Tomasi and Volkow, 2010, supplement).
Likewise a range of proportional thresholds have been reported, from 5
to 40% (e.g., Fornito et al., 2010). In attempts to show that results are
not sensitive to the choice of threshold, findings are often reported across
a narrow range of thresholds (e.g., Cole et al., 2013, top 2–10%; van den
Heuvel et al., 2009, r=0.3–0.5). However, this can lead to incomplete re-
sults or evenmisleading results if network properties are unstable across
a larger range of thresholds, for example if there is a reversal of group dif-
ferences in a network measure across thresholds (e.g., Scheinost et al.,
2012). Lastly, even if a canonical threshold was determined and agreed
upon, different preprocessing decisions such aswhether to use global sig-
nal regression (GSR) may shift the distribution of correlations (Murphy
et al., 2009), leading to binary graphs that are not comparable across
studies.

Therefore, this study sought to characterize the (in)stability of
network measures across thresholds. A large resting-state fMRI dataset
was used to measure network properties across the full range of abso-
lute and proportional thresholds. In addition, the effects of GSR on
network measures across thresholds were tested in order to highlight
how preprocessing decisions can influence the (in)stability of network
measures.

Methods

Participants

One hundred right-handed individuals participated in the study. All
participants provided written informed consent in accordance with the

Yale Human Investigations Committee at the Yale School of Medicine.
The analyses included 50 males (age 35 ± 10 years) and 50 females
(age 34 ± 12 years). 99 of these were from a prior dataset of 103 sub-
jects (Scheinost et al., 2015), 4 of whom were not included because
they did not complete all 8 runs, and 1 additional participant was
scanned in order to have equal sex groups. A subset of the current sam-
ple was grouped by age as younger participants (age range 18–25 years,
mean age 22 ± 3 years) and older participants (age range 44–66 years,
mean age 51± 6 years). Age groups were selected as the youngest and
oldest participants matched between-groups by gender, and were se-
lected to have participants matched within-groups by age and gender.
Younger participants included 10 males (age range 18–25 years, mean
age 23 ± 3 years) and 10 females (age range 18–25 years, mean age
22 ± 2 years). Older participants included 10 males (age range 44–
66 years, mean age 51 ± 6 years) and 10 females (age range 44–
63 years, mean age 51 ± 6 years).

Imaging parameters

Data were acquired on two identical Siemens 3 T Tim Trio MRI
scanners, including a localizer, followed by a low-resolution sagittal
scan for slice alignment and a T1-weighted axial-oblique scan using a
conventional spin-echo imaging sequence parallel to the AC-PC (25
slices, TR = 420 ms, TE = 11 ms; bandwidth = 130 Hz/pixel, flip
angle = 90°, slice thickness = 6 mm; FOV = 200 × 200 mm,
matrix = 256 × 256). Resting-state functional data was then obtained
at the same slice locations using a T2*-weighted gradient-recalled single
shot echo-planar imaging sequence (TR = 1550 ms, TE = 30 ms, flip
angle = 80°, FOV = 220 × 220 mm, matrix = 64 × 64, slice
thickness = 6 mm). Participants were instructed to rest with their
eyes open, not to think of anything in particular, and not to fall asleep.
There were 8 functional runs of 240 volumes each. The first 6 volumes
were discarded to ensure the magnetization had reached steady state.
Following the functional runs a high-resolution anatomical scanwas ob-
tained using a magnetization-prepared rapid gradient-echo (MPRAGE)
imaging sequence (TR = 2530 ms, TE = 2.77 ms, TI = 1100 ms, flip
angle = 7°, resolution = 1 × 1 × 1 mm).

Connectivity preprocessing

Images were corrected for slice timing with sinc interpolation and
realigned for motion correction using SPM5 (http://www.fil.ion.ucl.ac.
uk/spm/software/spm5). In order to preserve the boundaries of func-
tional nodes, no spatial smoothing was applied. All further preprocess-
ing steps used BioImage Suite (www.bioimagesuite.org; Joshi et al.,
2011). Several covariates of no interest were regressed from the data in-
cluding linear and quadratic drift, six rigid-body motion parameters,
mean white matter signal, and mean cerebrospinal fluid (CSF) signal.
To test the effects of global signal regression (GSR), in an identical
dataset the mean overall global signal was regressed. All images were
temporally smoothed using a zeromean unit Gaussian filter with an ap-
proximate cutoff frequency of 0.12 Hz.

Network construction

First, 278 nodes were defined by warping the functional brain
atlas (http://www.nitrc.org/frs/download.php/5785/shenetal_
neuroimage2013_funcatlas.zip; Shen et al., 2010; Shen et al., 2013)
into single subject space via a concatenation of linear and non-linear
registrations: The functional images were linearly registered to the T1
axial-oblique (2D anatomical) images. The 2D anatomical images
were linearly registered to the MPRAGE (3D anatomical) images. The
3D anatomical images were non-linearly registered to the template
brain. All transformations were calculated and combined into a single
transform and inverted, in order to reduce interpolation error by
warping the atlas to an individual brain with only one transformation.
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All transformations were estimated using the intensity-based registra-
tion algorithms in BioImage Suite.

For each participant, pairwise correlation coefficients were comput-
ed for the time courses of each pair of nodes with data from all runs.
To test the stability of network measures across runs, pairwise correla-
tion coefficients were computed for the time courses of each pair of
nodes with data from each of the 8 runs. The correlation values were
normalized to z-scores using the Fisher transformation, resulting in
a 278 × 278 connectivity matrix. Because the matrices are Fisher-
transformed correlations, no matrices have zero surviving edges. The
connectivity matrices were then converted into a binary adjacency ma-
trix by thresholding usingMatlab (www.mathworks.org). Negative cor-
relations were not included in the calculation of binary networks. An
absolute threshold (τr) was applied from τr = 0–1 at 0.01 intervals.
Using a Matlab function from Brain Connectivity Toolbox (https://
sites.google.com/site/bctnet; Rubinov and Sporns, 2010), a proportional
threshold (τp) was applied from τp = 0.01–0.99 at 0.01 intervals.

Comparing network measures

Network properties were calculated using Matlab functions from
Brain Connectivity Toolbox, and included the commonly reported
network-level measures: characteristic path length, global efficiency,
transitivity, andmodularity; andnode-levelmeasures: clustering coeffi-
cient, local efficiency, degree, betweenness centrality, and participation
coefficient. Definitions are provided in Table 1 (also see: Rubinov and
Sporns, 2010). For networkmeasures based on distance, such as charac-
teristic path length, disconnected nodes are removed from the calcula-
tion. For network measures based on the adjacency matrix, such as
degree, disconnected nodes are assigned a value of 0 (Rubinov and
Sporns, 2010).

To visualize the stability of networkmeasures, a ‘survival curve’was
plotted to describe how the network measure changes with connection
threshold, i.e., survival as a function of threshold. The networkmeasure
value can be estimated as a single point on the survival curve. Therefore,
the shape of this curve can be used to provide a description of network
measure stability across thresholds, for example a monotonic curve

would indicate stability, whereas a U-shape would indicate instability.
Survival curves are displayed for a range of thresholds from less to
more conservative: 0–1 for absolute thresholds; 0.99–.01 for propor-
tional thresholds. To test network measure stability across thresholds,
independent t-tests were used to compare measures between sex
groups or age groups at each threshold. Reversals in the direction of sig-
nificant group differences across thresholds (‘sign reversals’) were also
used as an index of instability. In addition, correlations between each
measure and age across all 100 participantswere computed. To test net-
work measure stability across runs, repeated measures analyses of var-
iancewere used to test for an effect of run at each threshold. All analyses
were performed on graphs derived with and without GSR. Statistical
analyses were performed using SPSS 21 (http://www-01.ibm.
com/software/analytics/spss) or Matlab, and a significance level of
p b .05. All reported findings are significant at this level (specific thresh-
olds are reported in Tables 2–3). Several example nodes are described.

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.05.046.

Results

Network-level measures

Characteristic path length (L)

Absolute threshold. The survival curve for L has an inverted V-shape
without GSR, with the maximum shifted to a lower threshold with
GSR (Figs. 1A–F). L was longer for females or males (depending on
threshold) with and without GSR (Figs. 1A–B). L did not differ by age
without GSR; with GSR, L was longer for younger participants and was
negatively correlated with age (Figs. 1C–D; Inline Supplementary
Figure S1). The shape of the survival curve for L was consistent
across runs, although an effect of run was found with and without
GSR (Figs. 1E–F).

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.05.046.

Proportional threshold. The survival curve for L increases smoothly with-
out GSR, or is flat and then increases smoothly with GSR (Figs. 1G–L).
L was longer for males with and without GSR (Figs. 1G–H). L did not
differ between age groupswithout GSR, yetwas negatively or positively
correlated with age; with GSR, L did not differ between age groups, yet
was negatively correlated with age (Figs. 1I–J, Inline Supplementary
Figure S1). The shape of the survival curve for L was consistent across
runs, although an effect of run was found with and without GSR
(Figs. 1K–L).

Global efficiency (Eglob)

Absolute threshold. The survival curve for Eglob is monotonic and de-
creases without GSR, with the minimum shifted to a lower threshold
with GSR (Inline Supplementary Figures S2A–F). Eglob was higher for
males with and without GSR (Inline Supplementary Figures. S2A–B).
Eglob did not differ by age with or without GSR (Inline Supplementary
Figures S2C–D, Inline Supplementary Figure S1). The shape of the sur-
vival curve for Eglob was consistent across runs, although an effect of
run was found with and without GSR (Inline Supplementary
Figures S2E–F).

Inline Supplementary Fig. S2 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.05.046.

Proportional threshold. The survival curve for Eglob is monotonic and de-
creases without GSR, or is flat and then decreases with GSR (Inline
Supplementary Figures S2G–L). Eglob did not differ between sex groups
without GSR;with GSR, Eglobwas higher for females (Inline Supplemen-
tary Figures S2G–H). Eglob did not differ between age groups without

Table 1
Network measures (Bassett and Bullmore, 2006; Rubinov and Sporns, 2010).

Network-level measures
Characteristic path length (L) is the average shortest path length (i.e., the minimal
number of edges that form a direct connection between two nodes) between all
pairs of nodes in the network and is a measure of functional integration. A short
L indicates a more compact network and more efficient global information
processing.

Global efficiency (Eglob) is the average inverse shortest path length between all
pairs of nodes in the network and is a measure of functional integration, and
represents the functional efficiency of brain networks for information
transmission between multiple parallel paths.

Transitivity (T) is the ratio of triangles to triplets in the network, and is a
measure of clustering or functional segregation.

Modularity (M) quantifies how well the network can be subdivided into
non-overlapping groups of nodes or modules and is a measure of functional
segregation.

Node-level measures
Clustering coefficient (C) is a measure of the number of edges between a node's
nearest neighbors or the fraction of triangles around a node, and is a measure
of functional segregation. High C represents clustered connectivity at the node.

Local efficiency (Eloc) is the global efficiency computed on node neighborhoods, is
related to C, and is a measure of functional segregation.

Degree (d) is the number of edges connected to a node, and provides information
related to the centrality of a node by determining nodes with a large number of
connections.

Betweenness centrality (CB) is the fraction of all the shortest paths in the network
that contain a given node. Nodes with high CB participate in a large number of
shortest paths and may connect distinct parts of the network.

Participation coefficient (P) is a measure of the inter-modular connections of
nodes and indicates centrality.
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GSR, yet was negatively correlated with age; with GSR, Eglob did not dif-
fer between age groups, yet was positively correlated with age (Inline
Supplementary Figures S2I–J, Inline Supplementary Figure S1).
The shape of the survival curve for Eglob was consistent across runs,
although an effect of runwas foundwithout GSR (Inline Supplementary
Figures S2K–L).

Transitivity (T)

Absolute threshold. The survival curve for T is U-shaped without GSR,
with the minimum shifted to a lower threshold and J-shaped with
GSR (Inline Supplementary Figures S3A–F). T was higher for males or

females with and without GSR (Inline Supplementary Figures S3A–B).
T did not differ between age groups without GSR, yet was positively
correlated with age; with GSR, T did not differ by age (Inline Supple-
mentary Figures S3C–D, Inline Supplementary Figure S1). The shape
of the survival curve for T was consistent across runs, although an
effect of run was found without GSR (Inline Supplementary Figures
S3E–F).

Inline Supplementary Fig. S3 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.05.046.

Proportional threshold. The survival curve for T is monotonic and
decreases without GSR, or is flat and then decreases with GSR (Inline

Fig. 1.Characteristic path length (L) across absolute (A–F) andproportional (G–L) thresholds, compared between sex groups (top), age groups (middle), and across runs (bottom),without
and with GSR. *p b .05 (see Table 2).

Table 3
Summary of significant effects of run across thresholds.

Absolute thresholds (τr) Proportional thresholds (τp)

Metric No GSR GSR No GSR GSR

Effect of run L 0.37–0.56 0.16–0.62, 0.93 0.06–0.53, 0.55, 0.59, 0.64, 0.82–0.92 0.02–0.03
Eglob 0.54–0.86, 0.97–0.98 0.16–0.78 0.03–0.37, 0.82–0.91
T 0–0.47, 0.91–1 0.14–0.99
M 0.65, 0.69, 0.71 0.56, 0.71, 0.76, 0.78, 0.85 0.05

L — characteristic path length, Eglob — global efficiency, T — transitivity,M — modularity; all results significant at p b .05.
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Supplementary Figures S3G–L). T did not differ between sex groups
without GSR; with GSR, T was higher for males (Inline Supplementary
Figures S3G–H). T did not differ between age groups without GSR,
yet was positively correlated with age; with GSR, T did not differ by
age (Inline Supplementary Figures S3I–J, Inline Supplementary
Figure S1). The shape of the survival curve for T was consistent across
runs, although an effect of run was found without GSR (Inline Supple-
mentary Figures S3K–L).

Modularity (M)

Absolute threshold. The survival curve for M is S-shaped without GSR,
with the maximum shifted to a lower threshold and inverted J-shaped
with GSR (Inline Supplementary Figures S4A–F). M did not differ
between sex groups without GSR; with GSR, M was higher for males
or females (Inline Supplementary Figures S4A–B). M was higher for
younger participants without GSR and negatively correlated with age;
with GSR, M was higher for younger participants and negatively

correlated with age (Inline Supplementary Figures S4C–D, Inline Sup-
plementary Figure S1). The shape of the survival curve forMwas consis-
tent across runs, although an effect of run was found with and without
GSR (Inline Supplementary Figures S4E–F).

Inline Supplementary Fig. S4 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.05.046.

Proportional threshold. The survival curve for M increases smoothly to a
final sharp peak without GSR, or is flat and then increases to a sharp
peak with GSR (Inline Supplementary Figures S4G–L). M did not differ
between sex groups without GSR; with GSR, M was higher for males
(Inline Supplementary Figures S4G–H). M was higher for younger
participants without GSR and negatively correlated with age; with
GSR, M was higher for younger participants and negatively correlated
with age (Inline Supplementary Figures S4I–J, Inline Supplementary
Figure S1). The shape of the survival curve for M was consistent across
runs, although an effect of run was found with GSR (Inline Supplemen-
tary Figures S4K–L).

Fig. 2.Number of nodes showing a significant t-test between sex groups for clustering coefficient (C), local efficiency (Eloc), degree (d), betweenness centrality (CB), and participation co-
efficient (P), across absolute thresholds (left) and proportional thresholds (right), without GSR (black) and with GSR (gray). p b .05.
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Node-level measures

Clustering coefficient (C)

Absolute threshold. The number of nodes showing a difference in C be-
tween sex groups is skewed toward low thresholds without GSR, with
the peak shifted toward lower thresholds with GSR (Fig. 2, left).
Seventy-six nodes showed sign reversals between sex groups without
GSR; 97 nodes showed sign reversals with GSR (Fig. 4). The survival
curve for C is typically U- or S-shaped at a given node. At node 15, C
was higher for males or females with and without GSR (Figs. 5A–B).
The number of nodes showing a difference in C between age groups is
minimal at low thresholds then increases without GSR, and higher at
low thresholds and variable with GSR (Fig. 3, left). Twenty-two nodes
showed sign reversals between age groups without GSR; 67 nodes
showed sign reversals with GSR (Fig. 4). At node 174, C was higher for
older or younger participants with and without GSR (Figs. 5E–F).

Proportional threshold. The number of nodes showing a difference in C
between sex groups is minimal at high thresholds then increases

without GSR, and with GSR is flat and then peaks (Fig. 2). Three nodes
showed sign reversals between sex groups without GSR; 5 nodes
showed sign reversals with GSR (Fig. 4). The survival curve for C typical-
ly decreases or is stable and then drops off. At node 15, Cwas higher for
males with and without GSR (Figs. 5C–D). The number of nodes show-
ing a difference in C between age groups is minimal at high thresholds
and variable without GSR, and with GSR is flat and then peaks (Fig. 3).
Four nodes showed sign reversals between age groups without GSR; 2
nodes showed sign reversals with GSR (Fig. 4). At node 174, C was
higher for older participants with and without GSR (Figs. 5G–H).

Local efficiency (Eloc)

Absolute threshold. The number of nodes showing a difference in Eloc be-
tween sex groups is skewed toward low thresholds without GSR, with
the peak shifted toward lower thresholds with GSR (Fig. 2). Three
nodes showed sign reversals between sex groups without GSR; 1 node
showed a sign reversal with GSR (Fig. 4). The survival curve for Eloc is
typically non-monotonic with a downward trend. At node 272, Eloc
was higher for males or females with and without GSR (Inline

Fig. 3.Number of nodes showing a significant t-test between age groups for clustering coefficient (C), local efficiency (Eloc), degree (d), betweenness centrality (CB), and participation co-
efficient (P), across absolute thresholds (left) and proportional thresholds (right), without GSR (black) and with GSR (gray). p b .05.
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Supplementary Figures S5A–B). The number of nodes showing a differ-
ence in Eloc between age groups is minimal at high thresholds then in-
creases without GSR, and is higher at low thresholds and then peaks

with GSR (Fig. 3). One node showed a sign reversal between age groups
with or without GSR (Fig. 4). At node 128, Eloc was higher for older or
younger participants without GSR, and higher for younger participants
with GSR (Inline Supplementary Figures S5E–F).

Inline Supplementary Fig. S5 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.05.046.

Proportional threshold. The number of nodes showing a difference in Eloc
between sex groups is minimal at high thresholds then increases with-
out GSR, andwith GSR is flat and then peaks (Fig. 2). Two nodes showed
sign reversals between sex groups without GSR; 3 nodes showed sign
reversals with GSR (Fig. 4). The survival curve for Eloc is typically non-
monotonic and decreasing or is flat with a peak and drop-off. At node
272, Elocwas higher formaleswith andwithout GSR (Inline Supplemen-
tary Figures S5C–D). The number of nodes showing a difference in Eloc
between age groups is minimal at high thresholds then increases
without GSR, and with GSR is flat and then peaks (Fig. 3). Three
nodes showed sign reversals between age groups without GSR; 2
nodes showed sign reversals with GSR (Fig. 4). At node 128, Eloc was
higher for older participants without GSR (Inline Supplementary
Figures S5G–H).

Degree (d)

Absolute threshold. The number of nodes showing a difference in d be-
tween sex groups is skewed toward low thresholds without GSR, with
the peak shifted toward a slightly lower threshold with GSR (Fig. 2).
No nodes showed a sign reversal between sex groups without GSR; 8
nodes showed sign reversals with GSR (Fig. 4). The survival curve for

Fig. 4. Number of ‘sign reversals’ in the direction of significant differences for sex groups
(top) and age groups, for participation coefficient (P), clustering coefficient (C), betweenness
centrality (CB), degree (d), and local efficiency (Eloc), across absolute thresholds (black) and
proportional thresholds (gray), without GSR (solid bars) and with GSR (open bars).

Fig. 5. Clustering coefficient (C) compared between sex groups at node 15, and between age groups at node 174, across absolute thresholds (top) and proportional thresholds (bottom),
without and with GSR. *p b .05 (see Table 2). Node displayed (green) as overlay on MNI brain.
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d is typically monotonic and decreasing. At node 249, d did not show a
difference between sex groups without GSR, but was higher for males
or females with GSR (Inline Supplementary Figures S6A–B). The num-
ber of nodes showing a difference in d between age groups is variable
without GSR, and is higher and skewed toward high thresholds with
GSR (Fig. 3). Onenode showed a sign reversal between age groupswith-
out GSR; 7 nodes showed sign reversalswith GSR (Fig. 4). At node 199, d
was higher for younger or older participants without GSR, and higher
for older participants with GSR (Inline Supplementary Figures S6E–F).

Inline Supplementary Fig. S6 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.05.046.

Proportional threshold. The number of nodes showing a difference in d
between sex groups increases without GSR, and with GSR is flat and
then increases to peak (Fig. 2). Two nodes showed sign reversals be-
tween sex groups without GSR; 4 nodes showed sign reversals with
GSR (Fig. 4). The survival curve for d is typicallymonotonic and decreas-
ing or flat and then decreasing. At node 249, d was higher for females
without GSR, and higher for females or males with GSR (Inline Supple-
mentary Figures S6C–D). The number of nodes showing a difference in d
between age groups was variable and increasingwithout GSR, andwith
GSR is flat and then peaks (Fig. 3). Four nodes showed sign reversals be-
tween age groupswithoutGSR; 8 nodes showed sign reversalswith GSR
(Fig. 4). At node 199, d was higher for older or younger participants
without GSR, and higher for older participants with GSR (Inline Supple-
mentary Figures S6G–H).

Betweenness centrality (CB)

Absolute threshold. The number of nodes showing a difference in CB be-
tween sex groups is low and variable with or without GSR (Fig. 2). Fifty-
three nodes showed sign reversals between sex groupswithout GSR; 59
nodes showed sign reversals with GSR (Fig. 4). The survival curve for CB
is typically non-monotonic with an inverted V-shape. At node 104, CB
was higher for females or males with and without GSR (Inline Supple-
mentary Figures S7A–B). The number of nodes showing a difference in
CB between age groups was highest at moderate thresholds without
GSR, and skewed toward low thresholds with GSR (Fig. 3). Fourteen
nodes showed sign reversals between age groups without GSR; 47
nodes showed sign reversals with GSR (Fig. 4). At node 26, CB was
higher for older or younger participants with and without GSR (Inline
Supplementary Figures S7E–F).

Inline Supplementary Fig. S7 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.05.046.

Proportional threshold. The number of nodes showing a difference in CB
between sex groups is low and variable without GSR, and with GSR is
flat and then peaks (Fig. 2). Eight nodes showed sign reversals between
sex groups without GSR; 23 nodes showed sign reversals with GSR
(Fig. 4). The survival curve for CB typically increases to a sharp peak
and then drops off. At node 104, CB was higher for females without
GSR, and higher for males or females with GSR (Inline Supplementary
Figures S7C–D). The number of nodes showing a difference in CB be-
tween age groups is variable without GSR, and with GSR is higher and
flat and then peaks and decreases (Fig. 3). Three nodes showed sign re-
versals between age groups without GSR; 16 nodes showed sign rever-
sals with GSR (Fig. 4). At node 26, CB was higher for older participants
without GSR, and higher for younger participants with GSR (Inline Sup-
plementary Figures S7G–H).

Participation coefficient (P)

Absolute threshold. The number of nodes showing a difference in P be-
tween sex groups is low and variable with and without GSR (Fig. 2).
Sixty-eight nodes showed sign reversals between sex groups without
GSR; 124 nodes showed sign reversals with GSR (Fig. 4). The survival

curve for P is typically non-monotonic with a downward trend. At
node 20, Pwas higher for females or males with or without GSR (Inline
Supplementary Figures S8A–B). The number of nodes showing a differ-
ence in P between age groups is variable with and without GSR (Fig. 3).
Sixty nodes showed sign reversals between age groupswithout GSR; 85
nodes showed sign reversals with GSR (Fig. 4). At node 62, Pwas higher
for younger or older participants without GSR, and higher for younger
participants with GSR (Inline Supplementary Figures S8E–F).

Inline Supplementary Fig. S8 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.05.046.

Proportional threshold. The number of nodes showing a difference in P
between sex groups is variable without GSR, and with GSR is flat and
then peaks (Fig. 2). Twenty-four nodes showed sign reversals between
sex groups without GSR; 13 nodes showed sign reversals with GSR
(Fig. 4). The survival curve for P is typically non-monotonic with an
inverted J-shape or flat and then J-shaped. At node 20, P was higher
for males or females with and without GSR (Inline Supplementary
Figures S8C–D). The number of nodes showing a difference in P between
age groups is variable without GSR, and with GSR is flat, drops off and
then peaks (Fig. 3). Fourteen nodes showed sign reversals between
age groups without GSR; 10 nodes showed sign reversals with GSR
(Fig. 4). At node 62, P was higher for younger participants with and
without GSR (Inline Supplementary Figures S8G–H).

Discussion

Network measures were found to be unstable in a number of ways,
particularly across absolute thresholds. Few of the survival curves
were monotonic across absolute thresholds (e.g., Figs. 1A–F); this can
make it difficult to parameterize the curve with a simple function (as
in Scheinost et al., 2012). Most of the network measures showed ‘sign
reversals’ in the direction of group differences across absolute thresh-
olds (Fig. 4). Finally, the number of nodes showing a significant group
difference in a given network measure across absolute thresholds was
typically variable or skewed, i.e., not flat (Figs. 2–3).

Eglob and M were the most stable network-level measures across
absolute thresholds. Eglob is defined as the average inverse shortest
path length (Rubinov and Sporns, 2010) and is therefore related to
L. The current findings suggest that Eglob may be a more stable mea-
sure of functional integration than Lwhen using absolute thresholds.
Further, although Eglob exhibited a monotonic survival curve across
absolute thresholds (Inline Supplementary Figures S2A–F), the
curve for Eloc at a given node was typically non-monotonic across ab-
solute thresholds (Inline Supplementary Figures S5A–B, E–F). This
suggests that nodes may contribute to Eglob differently across abso-
lute thresholds. The most stable node-level measures were d and
Eloc, with few to no nodes showing sign reversals in these measures
across absolute thresholds (Fig. 4). Only one node showed a sign re-
versal in d across absolute thresholds (node 199, Inline Supplemen-
tary Figures S6E).

The stability of network measures was improved using proportional
thresholds. The survival curves for network measures across propor-
tional thresholds had more smoothly varying shapes. For example, the
inverted V-shaped curves of L across absolute thresholds were not
found (Fig. 1). Although a few networkmeasures showed sign reversals
across proportional thresholds (Fig. 4), in each instance, the reversal
occurred at one or a few extreme thresholds. For example, at node 20,
P was higher for males at τp = 0.01 or 0.02, but higher for females at
virtually every other threshold (Inline Supplementary Figures S8C–D).
The number of nodes showing a significant group difference in a net-
work measure across proportional thresholds was also less variable or
more flat (Figs. 2–3). These findings suggest that network measures
aremore stable across proportional than absolute thresholds. The appli-
cation of proportional thresholds has become more common in graph
theoretical analyses of human brain networks (e.g., Achard and
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Bullmore, 2007; Zhang et al., 2011). However, these findings demon-
strate that the outcome of network analyses can differ depending on
whether absolute or proportional thresholds are applied. For example,
Eglob was found to be greater for males than females across absolute
thresholds, but greater for females than males across proportional
thresholds,when the samepreprocessingmethodwasused (Inline Sup-
plementary Figures S2B, H).

The instability of networkmeasures at very high or very low thresh-
olds is expected and is related to the calculation of these measures as
the graph becomes more or less connected. The current findings dem-
onstrate, however, that network measure instability is not restricted
to extreme thresholds, but occurswithin reasonable, commonly applied
ranges. For instance, L decreases at high absolute thresholds (and also at
very low proportional thresholds b .01; not displayed) because many
nodes no longer have paths between them that survive threshold,
thereby decreasing the average shortest path length. However, the
instability of L was not restricted to high absolute thresholds (Fig. 1).
With GSR, L was greater for females at reportable, low thresholds
(r = 0.24–0.57), but greater for males at reportable, high thresholds
(r= 0.73–0.75, 0.82–0.88), as published studies have reported findings
at absolute thresholds ranging from r = 0.1–0.8 (e.g., Buckner et al.,
2009; Tomasi and Volkow, 2010; supplements). For network measures
showing sign reversals in the direction of group differences across abso-
lute thresholds, most showed sign reversals within the typically report-
ed range (Table 2). Proportional thresholds were found to improve
network measure stability, and this was indicated by all sign reversals
across proportional thresholds occurring at one or a few extreme
thresholds, as described above.

Networkmeasures were also found to be somewhat unstablewithin
subjects across the eight resting-state fMRI runs. Only network-level
measures were tested across runs. Although the shapes of the survival
curves were consistent across runs (e.g., Figs. 1E–F, K–L), indicating rel-
ative stability, therewas nevertheless a significant effect of run on every
network measure at some thresholds, depending on the type of thresh-
old applied and the preprocessing method.

Finally, these findings demonstrate an impact of preprocessing with
GSR, but did not reveal a consistent effect of GSR on the stability of net-
workmeasures. The survival curveswere typically shifted by GSR across
absolute or proportional thresholds. GSR impacted group differences
in a number of ways: (a) group differences were only found with GSR
(e.g., sex; Eglob, T, M; proportional threshold); (b) group differences
found without GSR were no longer found with GSR (e.g., age; node
128; Eloc; proportional threshold); (c) sign reversals found without
GSR resolved to one direction of group differences with GSR (e.g., age;
node 199; d; absolute or proportional threshold); and (d) at worst,
the direction of group differences found without GSR reversed with
GSR (e.g., age; node 26; CB; proportional threshold). Across absolute
thresholds, with GSR, all network measures showed a sign reversal by
sex with the exception of Eglob. Across proportional thresholds, with
GSR, d, CB, and P showed sign reversals. These findings suggest that
GSR does not improve network measure stability in any consistent
way. It is possible that in some instances, the group differences found
with GSR are a correct representation of the data. GSRmay facilitate ob-
servations of true physiological relationships in the brain (Fox et al.,
2009) and can help mitigate artifacts due to motion (Yan et al., 2013)
or variations in carbon dioxide (Wise et al., 2004). However, in the cur-
rent findings, it is not possible to determine whether GSR reveals true
group differences, and overall, GSR was not found to stabilize network
measures across thresholds. Alternative solutions to account for global
signal fluctuations include physiological noise removal using indepen-
dent components (Griffanti et al., 2014) or principal components analy-
ses (e.g, CompCor; Behzadi et al., 2007).

In summary, network analyses enable characterization of the large-
scale organization of the brain from fMRI connectivity data, however,
a threshold is commonly applied to infer network structure from the
data, and the current findings, and other studies (e.g., Scheinost et al.,

2012), have shown that network measures are unstable across thresh-
olds. Here we provide additional evidence that network measures are
unstable across runs and can change with different preprocessing pipe-
lines. As there is no biologically principled way to set a threshold for a
brain network, thresholds remain an ‘educated guess’ (Van Dijk et al.,
2010). The current findings demonstrate that the choice of thresholding
approach can dramatically impact results, including even reversing the
direction of group differences in a network measure.

Recent studies have reported findings across a range of thresholds.
This is useful for a more complete understanding of the data. Other ap-
proaches to thresholding were not tested in the current study, such as
weighted graphs, in which edges carry some continuous weight value,
such as related to the strength or effectiveness of connections, or the
distance between nodes (Reijneveld et al., 2007). However, it is not
straightforward how best to set weights that reflect the relative
strengths of connections (Fornito et al., 2010). It has also been sug-
gested thatweighted graphs are not reasonable biological structures be-
cause in weighted graphs all brain regions are connected to all other
brain regions (Sporns, 2011). However, unlike measures of anatomical
connectivity which are considered to reflect direct connections, func-
tional connectivity measures reflect both direct (monosynaptic) and
indirect (polysynaptic) connections (Buckner et al., 2013), and there-
fore weighted graphs in which all nodes are connected may still reflect
a reasonable representation of brain networks. Methods have improved
for modeling weighted brain networks (e.g., Latora and Marchiori,
2003), and the weighted approach has been used to characterize
network properties as they relate to sex and age (Gong et al., 2009),
among others. Additional methods can be used that integrate network
measures over a full range of thresholds and, thus, are not sensitive to
threshold effects (e.g., Ginestet et al., 2011; Scheinost et al., 2012).
One approach is to parameterize the distribution of a network measure
calculated over all thresholds (Scheinost et al., 2012). These parameters
can then be used to compare connectivity between groups
(e.g., Garrison et al., 2014; Scheinost et al., 2015), or to relate connectiv-
ity to behavior or other variables (e.g., Mitchell et al., 2013). A second
approach is to useMonte Carlo sampling to integrate networkmeasures
over a range of proportional thresholds for both weighted and un-
weighted networks (Ginestet et al., 2011).

Conclusion

Network analyses are useful for summarizing large-scale brain
organization, to relate features of network topology to behavior and
cognition, and to examine changes in these features in clinical popula-
tions such as individuals with neurological and psychiatric disorders.
However, caution must be used when conducting and interpreting
network analyses. As studies work to elucidate the organization of
functional brain networks in these and other contexts, the choice of
thresholding approach must be carefully motivated because the net-
work structure inferred largely determines the neurobiological inter-
pretation (Rubinov and Sporns, 2010).
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